Spin-coated Ga-doped ZnO transparent conducting thin films for organic light-emitting diodes

نویسندگان

  • Pradipta K Nayak
  • Jihoon Yang
  • Jinwoo Kim
  • Seungjun Chung
  • Jaewook Jeong
  • Changhee Lee
چکیده

Gallium doped zinc oxide (GZO) thin films have been prepared by a simple sol–gel spin coating technique. XRD results showed the preferential c-axis orientation of the crystallites and the presence of the wurtzite phase of ZnO. A lowest resistivity of 3.3 × 10−3 cm was obtained for the ZnO film doped with 2 at% of Ga after post-annealing at 500 ◦C for 45 min in a H2 atmosphere. All the films showed more than 80% of transparency in the entire visible region. Blue shifting of the optical band gap was observed with an increase in Ga doping, which can be explained on the basis of the Burstein–Moss effect. OLED devices were fabricated using 2 at% Ga-doped ZnO thin films as anodes. Preliminary results obtained demonstrated that spin-coated GZO films can be used as a promising TCO for optoelectronic device applications. (Some figures in this article are in colour only in the electronic version)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative studies of Al-doped ZnO and Ga-doped ZnO transparent conducting oxide thin films

We have investigated the influences of aluminum and gallium dopants (0 to 2.0 mol%) on zinc oxide (ZnO) thin films regarding crystallization and electrical and optical properties for application in transparent conducting oxide devices. Al- and Ga-doped ZnO thin films were deposited on glass substrates (corning 1737) by sol-gel spin-coating process. As a starting material, AlCl3⋅6H2O, Ga(NO3)2, ...

متن کامل

Work Function Engineering of Functionally Graded ZnO+Ga2O3 Thin Film for Solar Cell and Organic Light Emitting Diodes Applications

ZnO+Ga2O3 functionally graded thin films (FGTFs) were examined for their potential use as Solar cell and organic light emitting diodes (OLEDs). FGTF transparent conducting oxides (TCO) were fabricated by combinatorial RF magnetron sputtering. The composition gradient was controlled up to 10% by changing the plasma power of the two sputter guns. A Ga2O3+ZnO graded region was placed on the top la...

متن کامل

Effect of zinc addition and vacuum annealing time on the properties of spin-coated low-cost transparent conducting 1 at% Ga–ZnO thin films

Pure and 1 at% gallium (Ga)-doped zinc oxide (ZnO) thin films have been prepared with a low-cost spin coating technique on quartz substrates and annealed at 500 °C in vacuum ∼10-3 mbar to create anion vacancies and generate charge carriers for photovoltaic application. Also, 0.5-1.5 at% extra zinc species were added in the precursor sol to investigate changes in film growth, morphology, optical...

متن کامل

Comparative Studies on Ultraviolet-Light-Derived Photoresponse Properties of ZnO, AZO, and GZO Transparent Semiconductor Thin Films

ZnO, Al-doped ZnO (AZO), and Ga-doped ZnO (GZO) semiconductor thin films were deposited on glass substrates via a sol-gel spin-coating process for application in a photoconductive ultraviolet (UV) detector. The doping concentrations of Al and Ga were 1.0 at % in the precursor solutions. In this study, the microstructural features and the optical and electrical properties of sol-gel-derived ZnO,...

متن کامل

Photocatalytic degradation of an azo textile dye with manganese-doped ZnO nanoparticles coated on glass

Mn doped ZnO nanocomposite thin film coated on glass by a simple spin-coating method was used to degrade an azo textile dye from aqueous environment. Mn doped ZnO nanocomposite thin film was characterized by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). The photo-reduction activity of photocatalyst was evaluated using an azo textile dye as organic contaminant irradiat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008